澳门十大娱乐网址大全-澳门十大网上博网址

【能机学院】Simplicity, Complexity and Multiscale Modelling – Understanding of High Temperature Creep Behaviors from Material to Component Level

讲座标题:【能机学院】Simplicity, Complexity and Multiscale Modelling – Understanding of High Temperature Creep Behaviors from Material to Component Level

主讲人: 陈浩峰教授

讲座时间:2019-12-25 13:30:00

讲座地点:学术楼105

讲座语言:英文/中文

主办单位:能机学院


讲座内容:


The fundamental and comprehensive understanding of creep behaviors is crucial to material researchers developing creep constitutive equations, developers of numerical methods of creep analysis, structural creep analysts and high temperature design code committees. This talk is intended to provide an overview of different aspects of creep behaviours at both the material and component levels. It distinguishes between creep behaviours observed in material creep/relaxation tests and creep responses appearing in structural and component due to the inhomogeneous distribution of stress and temperature. Simple analytical modelling can be adopted to simulate creep behaviour occurring during the load-controlled creep test and displacement-controlled stress relaxation test, and this is demonstrated by mathematical models for a two-bar structure and the stress relaxation problem of bolt. However, the elasto- visco-plastic FE modelling is normally required for the evaluation of the complicated creep behavior at component level for solving real engineering problems, owning to the consideration of stress multiaxiality, elastic follow-up with creep stress redistribution, non- isothermal condition and cyclic load effects, etc. Various creep responses including creep induced plastic strain during creep dwell, structural creep recovery, creep ratchetting due to cyclically enhanced creep or creep enhanced plasticity induced by the interaction between creep and cyclic plasticity will be discussed at component level and demonstrated by several case studies.

For components under creep fatigue load condition, the accurate evaluation of cyclic stress strain loop is the key to assess creep fatigue life when using an appropriate creep and fatigue damage model. Therefore in order to obtain the stabilised cyclic elastic-plastic-creep stress/strain responses, an extended Direct Steady Cycle Analysis (eDSCA) approach within the Linear Matching Method (LMM) framework is introduced with a practical example, which considers the full interaction between creep and cyclic plasticity and is able to address above mentioned creep responses in an accurate and efficiently manner.

In conclusion, a certain degree of knowledge about the different mechanisms of creep which appear in different configurations of materials, states of stress, structural geometries, temperature distributions and loading types is important for a structural analyst to be able to choose an appropriate modelling method for assessing the creep response and damage in a practical engineering problem associated with inhomogeneous stress distribution and non-isothermal condition.





主讲人概况:

陈浩峰教授,英国Strathclyde大学机械与航空系博士生导师,华东理工大学讲座教授,美国机械工程师学会院士(ASME Fellow), 英国机械工程师学会会士(Fellow),英国高等教育学院会士(Fellow),英国皇家工程学院高级研究员,前美国ASME压力容器技术杂志副主编(2010-2017),英国特许工程师。陈浩峰教授1994年获清华大学工程力学系工程力学专业和经济管理学院经济管理专业双学士学位,1995年和1998年分别获得清华大学工程力学系固体力学专业硕士和博士学位。自2008年加盟英国Strathclyde大学,组建并领导了结构设计和安全评估研究团队。所建立的用于材料及结构设计和完整性评估的新型数值方法及相应规范和App,达到国际领先水平。陈浩峰教授在材料及结构完整性评估数值方法,高温金属结构的蠕变疲劳,高温复合材料的安全评估和寿命预测,含裂纹/焊接结构的完整性,以及在极限安定分析,高温结构棘轮破坏分析等方面做出了开创性的研究成果,获得了国际同行的广泛认可,10多次担任国际会议的分会主席。近年来获得了英国工程和物理科学研究理事会(EPSRC),英国皇家学会, 英国皇家工程学院(RAE),中国自然科学基金委,以及英国能源企业(EDF Energy),劳斯莱斯企业(Rolls-Royce), 西门子(Siemens)等国际知名企业超2百万英镑的科研经费支撑,作为项目负责人承担英国国家级科研项目8项。2018年获国家自然科学基金委海外及港澳合作研究基金(原海外杰青)资助。

XML 地图 | Sitemap 地图